

OT Security Engineering

Powerful New Tools to Address Cyber Risk to Industrial Operations and Critical Infrastructure

Rees Machtemes, P.Eng.

Director of Industrial Security at Waterfall Security Solutions Ltd.

About WATERFALL SECURITY

2007

Founded

>1000

Sites

>20

Verticals

6 Global Sales & Ops Hubs

Published Patents

Leading the world's OT unidirectional gateway market with superior solutions, worldwide presence, and proven track record of success

Key Sectors:

Power

Manufacturing

Facilities

Water

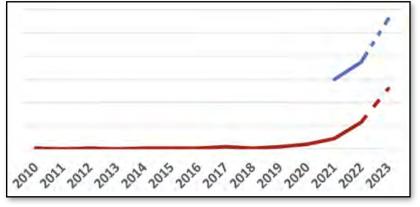
OT Cyber Risk: Changed Forever

Exponential growth

More than doubling annually

This is a state change

From "theoretical possibility" to "real and growing exponentially"


Will we ever go back

To a year like 2018 with one attack?

Similar trend in FBI stats (2021-22)

www.ic3.gov/Home/AnnualReports

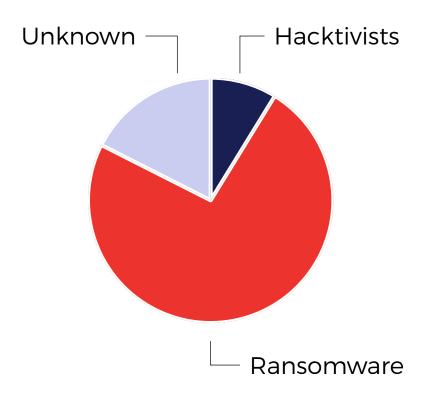
At 150% annual growth, we will see 4,500 attacks in 2027 affecting 15,000 sites

Legend:

WF Threat Report

FBI OT Incidents Reported

Who Is Behind All This?


Almost all ransomware - how?

- 1. Some ransomware targets OT specifically
- Some victims stop OT in an "abundance of caution"
- 3. Some OT systems fail because of OT to IT dependencies

Ransomware uses nation-state tools

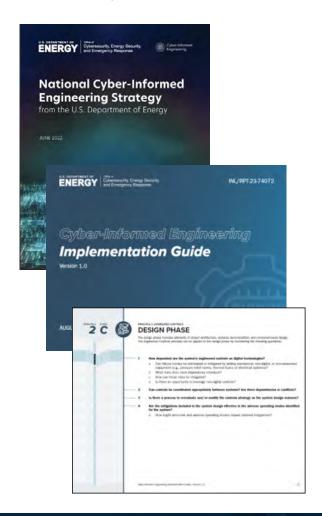
2023 US Cyber Strategy: ransomware criminals are using nation-state tools and techniques

Threat actors

Cyber-informed Engineering

If your life depends on a boiler not exploding

Would you prefer spring-loaded pressure relief valve? Or longer PLC password? Where is the valve in IEC 62443 or NIST CSF?


Engineering profession

Managed physical risk for a century or more New threat, same risks to public, safety and environment

Engineering-grade

Would you trust a bridge whose designer hopes it will carry a specified load, for a specified number of decades?

CIE is a "coin with two sides" - IT-grade cybersecurity + engineering-grade designs - we always need both

Security Engineering – SEC-OT

Security PHA Review


Physical protection from safety incidents - security applications of OSHA Process Hazard Analysis

Consequence-driven, Cyber Informed Engineering Risk assessment + unhackable mitigations

Secure Operations Technology

All cyber attacks are information – control information flows physically, and you control the attack vectors

Engineering-grade solutions work predictably and deterministically

Cyber Design Basis Threat (cDBT) model

RISK != CONSEQUENCE X LIKELIHOOD

Does 1x3 really equal 3x1?

Cyber attacks are deterministic, not random Errors & omissions confuse risk calculations

Consequence			
High	Medium	High	High
Medium	Low	Medium	High
Low	Low	Low	Medium
Likelihood	Low	Medium	High

RISK = f(conseq, intent, c(opportunity), capability)

If intent & (capability > c(opportunity)) then consequence

Consequence: result of compromise

Intent: does threat actor want to attack us?

C(Opportunity): capability needed to exploit opportunity

Capability: ability of the threat actor to attack

#20 #18 #9 #10 #17 #1 #19 #8 #14 #15 #16 #5 **#7** #11 #4 **cDBT**

Cyber Design Basis Threat: description of the kinds of attacks we are required to defeat reliably

Network Engineering Concepts

Consequence boundaries and network segmentation

Must prevent propagation of these remote-control / malware attacks EPRI IIoT model

Most widely-deployed solution

Engineering-grade unidirectional gateways enable visibility into OT networks without risk of compromise

Dependencies and resilience

dependency analysis, trust relationships, manual operations fallback

Segmentation Example: EPRI IIoT

EPRI: Safe Cloud Connections

How to safely connect vibration monitoring "edge devices" straight out to cloud / vendor turbine monitoring

Engineering study: No control

Convince yourself that the edge devices are physically incapable of control - truly monitor only

Deploy on own network

Physically separate from control network, straight out to cellular Internet if you like

No way to pivot attack from Internet or cloud into control network

Unidirectional Security Gateway Technology

Absolute protection with complete network visibility

NIST 800-82: Unidirectional gateways are a combination of hardware and software

- The hardware sends information in only one direction
- The software copies servers & devices from the OT network to the enterprise network
- No attack, no matter how sophisticated, can propagate back into the OT network through the gateway

Engineering-Grade Unidirectionality

Zero internal cross-connects provide robust and certified unidirectional engineering

Physically divided industrial and enterprise components

Dual power supplies on each of sending & receiving sides

DIN RAIL, split (2U) and 1U form factors

Physical divider down center of unit ensures that there are no cross-connects inside the unit

Mature Software Connectors

Historians & databases

- Aveva (OSIsoft): PI, PI Asset Framework, PI Backfill
- GE: iHistorian, iHistorian Backfill, OSM, Bently-Nevada System1
- Schneider-Electric: Wonderware eDNA, Wonderware Historian, Wonderware Historian Backfill, SCADA Expert ClearSCADA, Siemens CFE & WinTS
- Rockwell FactoryTalk Historian , Honeywell Alarm Manager
- AspenTech IP.21, Scientech R*Time, Microsoft SQL Server, Oracle, MySQL

Industrial applications and protocols

- Siemens S7
- Yokogawa ExaQuantum OPC, GE iFix, Leidos HBS
- OPC DA, A&E, HDA, HDA Backfill, OPC UA, UA Historians, UA Alarms & Events
- Modbus, DNP3, ICCP, IEC 60870-5-104, BACNet IP

File transfer

- Folder mirroring, Local Folders
- FTP/S, SFTP, TFTP, CIFS, SMB, NFS
- Remote Folder Transfer

Enterprise monitoring

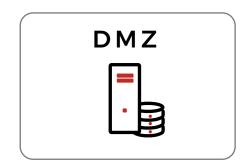
- FireEye CloudConnect, Email/SMTP, SNMP, Syslog UDP/TCP, TCP/IP & Multi, UDP
- HP ArcSight SIEM, McAfee ESM, Splunk, Qradar
- CyberX (Microsoft), Helix & Managed Defense, Dragos, Indegy, Radiflow iSID, Ethernet Spoofing, ForeScout Silent Defense,
- MSMQ, IBM MQ, Active MQ, AMQP, TIBCO EMS, MQTT, RabbitMQ, HTTP-Request
- SolarWinds Orion, Emerson EDS

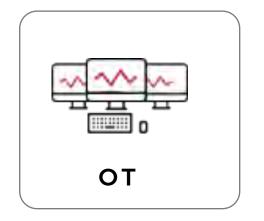
Remote access

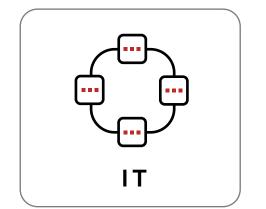
- Remote Screen View
- Secure Bypass

Other connectors

- TimeSync, Netflow
- Video & audio streaming, Broadcast, Multicast
- WSUS updaters
- AV Updates
- Remote printing, rsync




Dependency Example: Container Tracking



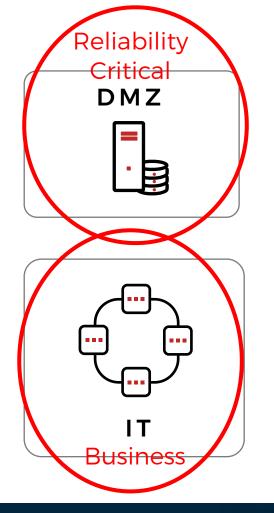
Common design

Can be hard to draw the line, so secure OT networks as safety-critical

Network engineering: Interdependencies

Common design

Can be hard to draw the line, so secure OT networks as safetycritical


Often three network criticalities

Safety-critical: worst case consequences are unacceptable Reliability-critical: unacceptable reliability consequences, e.g.

container tracking

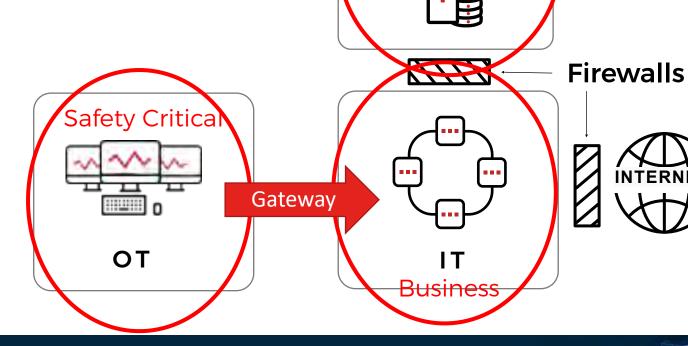
Business: worst case is accepted

Network engineering: Interdependencies

Often three network criticalities

Safety-critical: worst case consequences are unacceptable Reliability-critical: unacceptable reliability consequences, e.g.

in 🖨 🕒 🗶 f


container tracking

Business: worst case is accepted

Manage Differently

Safety-critical: prevent compromise (unidirectional) & prevent consequences (safety engineering) Reliability-critical: prevent compromise (refining) & prioritize recovery – resilience Business: buy insurance

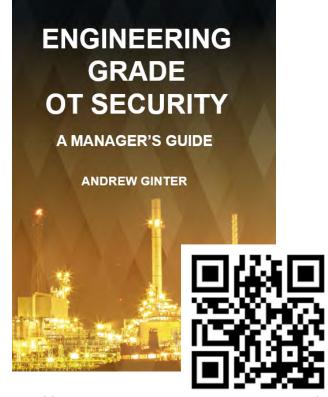
Eliminate or strictly manage dependencies at consequence boundaries

Reliability

Critical DMZ

New Book: Engineering-Grade OT Security FREE copies at our booth and online for a limited time

Public safety


Demands predictable & mathematically model-able designs and safety margins

Engineers must anticipate threat "load"To avoid constant change in ECC systems

Critical networks

Have unacceptable worst-case consequences and must be protected with engineeringgrade designs

Official Launch & Webinar Nov 1st

https://waterfall-security.com/engineering-grade-ot-security

